
ESPL Manual

Ensign Software Programming Language

Ensign 10

Copyright © 2019 Ensign Software, Inc.

Last Update: 3 April 2019

1

Table of Contents

Introduction..4
ESPL Language Features...4
Documentation Format..5

ESPL Programming Window..6
Projects..7

Suggestions for Designing an ESPL Program...7
Creating a new Project...7
Opening an Existing Project..8

Editing your ESPL Program..8
Designing Forms...8
Tool Palette and Components...9
Object Inspector..10
Adding some Programming Code...11
Running a Program...12
Saving the project..12
Adding more Features...13
Changing Component Properties..13
Writing Code - Events and Event Handlers...15

Code completion..16
Debugging scripts..17

ESPL Programming..18
Variable Types...18
Colors..19
Constants...20
Playback..20

Program Structure...20
Variable, Function, and Procedure Names...21
Assign Statements...21
Strings..21
Comments...21
Variables..22
Indexes..22
Arrays..22
Case statements ...23
Function and Procedure declaration ..23

Calling a subroutine...24
Passing parameters...24

Accessing objects..25
Calling DLL functions ..27

Supported Types ...28
Include Libraries ...28

Secure Library Files...29
Declaring Forms in ESPL..29

2

Event Redirection..31

3

ESPL Manual

Introduction
The Ensign Software Programming Language (ESPL) allows traders to create custom chart
studies, lines, reports, and tools. It can also be used to develop trading systems, alerts,
custom forms, and scans. The language contains hundreds of programming statements,
functions, events, methods, and properties. This manual documents each programming
statement and provides many examples.

The language is nearly identical to Delphi Pascal programming. Users who are familiar with
Delphi will easily adapt to the ESPL language. The language includes hundreds of
customized commands that provide unparalleled power and control over nearly every aspect
of Ensign.

Note: This new ESPL language for Ensign 10 is not backwards compatible with old ESPL
programs written for Ensign Windows. Modifications to old ESPL programs written for Ensign
Windows will be necessary in order to run with this new version of ESPL for Ensign 10.

ESPL Language Features

 begin .. end blocks
 procedure and function declarations
 if .. then .. else
 for .. to .. do .. step
 while .. do
 repeat .. until
 try .. except and try .. finally blocks
 case statements
 array constructors (x:=[1, 2, 3];)
 ^ , * , / , and , + , - , or , <> , >=, <= , = , > , < , div , mod , xor , shl , shr operators
 access to object properties and methods (ObjectName.SubObject.Property)
 Integrated Development Environment (IDE)
 Debugging tools: breakpoints, single step, variable watch window

4

Documentation Format
The following conventions are used throughout the documentation to define syntax.

Convention Description

Boldface Programming functions and statements.

() Parentheses enclose parameters that are necessary for each function or
statement. Commonly required parameters include numbers, price
values, colors, types, bar index locations, etc.

Italics Parameters and Variables. The functionality of each parameter is
documented so that you will know what the parameter specifies and is
used for. Parameter values must match the indicated variable type (ex.
integer, real, string). For example, an integer value should not be
entered as a parameter if a string value is expected.

[] Optional parameters are enclosed in square brackets. Optional
parameters provide additional functionality to programming statements,
but can be omitted if not necessary.

{ } Curly brackets enclose comments. Comments help document
programming code and are ignored when a program runs.

Courier Example ESPL programs are shown using the Courier New Font
type. If desired, sample programs can be entered and run in the Ensign
ESPL Editor window.

Each documented function and statement uses the following format.

Heading Description

SYNTAX Shows the required syntax for the function or statement

DESCRIPTION Describes what the function or statement does.

PARAMETERS Describes parameters, variables, and type names that are necessary for
a function or statement.

EXAMPLE Shows an example program using the function or statement.

NOTE Calls attention to important information regarding the use of the function
or statement.

5

ESPL Programming Window
ESPL applications are programmed and developed using the ESPL programming
window which is an Integrated Development Environment. The ESPL programming window
is used to create and design forms and to program applications that accomplish your
customized needs. To view the ESPL programming window click the ESPL button on the
Main toolbar.

The ESPL programming window has an Object Inspector on the left, a Code Editor window in
the middle, and a Tool Palette on the right. A Toolbar and several Menu items are displayed
at the top of the window. Keyboard shortcuts are available for most of the menu items.

The Object Inspector is used to view and edit the Properties and Events for objects and
forms. The Code Editor window is used to type and view your programming code. The Tool
Palette allows you to select and utilize many different useful components for your forms.

6

Projects
A Project is a collection of ESPL programming files that can be compiled and run to perform
your customized programming tasks. The ESPL programming language can be used to
create projects that will plot custom chart studies, plot unique chart lines, create complex
reports, scan symbols, and test your private trading systems.

Suggestions for Designing an ESPL Program
A programmer will often design a new program mentally, or on paper, before actually writing
any programming code. The first step in developing an ESPL program is to decide what the
program should do and what the user should see when the program runs.

Will the program utilize a form?
Will the form need menus, buttons, edit boxes, or other components?
Will the program plot some lines on a chart?
Will the program access some chart data?
Will the program need to display some calculation results?

Answering these types of questions can help you decide if an additional form is necessary in
your project. If a form is required, then you will need to select and decide where to place the
components that you would like to use (example: buttons, edit boxes, labels, combo boxes,
option buttons, etc.). After you design the form and interface for the program it will be easier
to start writing code, and you can decide what Events the components on the form should
recognize. For example, what should happen when the user clicks a particular button.

Creating a new Project
To create a new project, select File | New Project from the menu, or click the New Project
button on the toolbar. When a new project is started, a ProjectFile is created that keeps track
of all the other files and settings for the project. This file must have a file extension of .ssproj.
You cannot view or edit the ProjectFile in the ESPL programming window. However, when
you initially save your project you will be asked to name the ProjectFile. You should name the
ProjectFile to be the logical name of your application (like MyStudies.ssproj, or
MyScan.ssproj, or TradingSystem5.ssproj, etc.). We suggest that you create a new folder
and save the ProjectFile and its associated files in that folder.

Example: \Ensign10\ESPL\MyScan\

Additional files associated with the project are script files (called Units), and Form files. Unit
files have a file extension of .psc. Forms are comprised of 1 Unit file and 1 Form file. Form
files are automatically created and saved when its associated Unit file is saved. Form files
have a file extension of .sfm.

When you begin a new project, ESPL will create by-default a main unit (Unit1) and a form unit
(Unit2). These two files comprise the initial project. If you run the new ESPL application right
away (by clicking the green run button or pressing the F9 function key), a blank form window

7

will appear on your computer screen. If you don't need a form in your program, then you can
remove Unit2 and its associated Form from the default project.

Main Unit
Each project has a main unit (initially named Unit1). The designated main unit is the script file
that will be executed when you press F9 or click the Run button. If necessary, you can
change which unit is the designated main unit by selecting Project | Select Main Unit from
the menu, and then selecting a unit from the list of included script files.

Creating/adding units/forms to the project
You can create or add existing units/forms to the project by choosing the "File | New unit",
"File | New Form" and "File | Open (add to project)" menu options. If you are creating a new
one, you will be prompted with the same dialog as above, to choose the language of the new
unit. If you're adding an existing unit, then the IDE will detect the script language based on the
file extension.

Opening an Existing Project
To Open and display an existing project in the ESPL programming window, select File | Open
Project from the menu (or click the Open Project button on the toolbar), then browse to the
project file on your hard disk and select it.

Editing your ESPL Program
Use the Code Editor window to edit and program your ESPL programs. Features of the Code
Editor window include:

• code completion (pressing Ctrl+Space)
• syntax highlight
• line numbering
• clipboard operations
• automatic indentation

Designing Forms
A Form can be designed and used for many purposes. Forms are often used as the user
interface to run and control a program. A Form can be used to collect input, open and read
files, print reports, and to display lists and images. Forms can be designed with custom
labels, edit boxes, menus, buttons, and check boxes. When designing a Form, remember that
there are two files that control a Form (the Unit file and its associated Form file). Switch the
Code Editor window view between the Unit programming code and the Form designer view by
pressing the F12 key or by clicking the Code and Design tabs at the
bottom of the Code Editor window.

8

In the following simple example, a button and an edit box have been placed on a form.

Form Designer Features:
• Multi-selection of components
• Full use of all Clipboard operations
• Alignment palette (menu "Edit | Align")
• Bring to front / Send to back
• Tab order dialog
• Size dialog
• Locking/unlocking controls
• Grid and Snap to Grid

You can customize the Form Designer view settings by selecting Tools | Designer Options
from the menu. The look and feel of the ESPL Programming window can be customized with
your favorite colors, grid options, and hint settings.

Tool Palette and Components
The Tool Palette is used to create the user interface and
functionality of a Form. The Tool Palette contains a collection of
useful Components (also called tools or objects) that can be
placed on a Form. Components can be used to display information
or allow the user to perform an action. For example a Label is
used to display text, an Edit box allows the user to input some
data, a Button can be used to initiate actions. Any combination
of components can be placed on a form. When your program is
running a user can interact with the components on the form.

To place a component on a Form, first select (click) the component
on the Tool Palette that you want to use, then click the mouse on
the Form. The component will be located at the position where the
mouse was clicked, with a default width and height. Components
can be moved and resized on a Form by dragging the component

9

with the mouse, or by changing the appropriate properties in the Object Inspector (like Height,
Width, Top, and Left). Components can also be moved and resized by using the following
keyboard keys:

CTRL+Up Arrow: Move the component upwards on the form.
CTRL+Down Arrow: Move the component downwards on the form.
CTRL+Left Arrow: Move the component to the left on the form.
CTRL+Right Arrow: Move the component to the right on the form.

SHIFT+Up Arrow: Decrease the height of the component.
SHIFT+Down Arrow: Increase the height of the component.
SHIFT+Left Arrow: Decrease the width of the component.
SHIFT+Right Arrow: Increase the width of the component.

To remove a component from a form, first click on it and then press the Delete key on the
keyboard.

Each component has specific Properties and Events that allow you to control your program at
design time and at run time. Several components are available for use on the tool palette.
They are grouped according to the function they perform (Standard, Additional, Win32, and
Dialogs). Each group displays icons representing the components you can use to design
your application interface. For example, the Standard group includes controls such as the edit
box, label, button, and listbox.

Each time you start a new project you begin with an empty form window. The
default form name is Form2 (in Unit2). This form can be renamed, resized and
moved. It has a caption and the three standard minimize, maximize and close
buttons (at the top right corner of the form).

When a form is the active window and you press the F12 key, the Code Editor window will
be displayed that contains the code for the form. Press F12 again to revert back to the form
view (or click the Design tab at the bottom). As you add components to a form and design the
user interface of your application, ESPL automatically generates some underlying code for
the form and its components. The Properties (settings) and Events of each component can
be changed by using the Object Inspector window. It is your task, as the programmer, to
decide what happens when a user clicks a button or changes the text in an Edit box, etc.

Object Inspector
Each form and its components have Properties and Events. Properties such as color, size,
position, caption can be modified and customized to your exact needs. Events can also be
enabled or monitored, such as a mouse click, key press, or component activation. The Object
Inspector (left side of the ESPL Window) displays the properties and events (note the two
tabs at the top of the Object Inspector) for the selected component and allows you to change
the property value or select the response to an event.

10

For example, each form has a Caption property (the text that
appears on the form's title bar). To change the Caption of
Form2 first activate the form by clicking on it. Find the Caption
property in the Object Inspector and see that it has a current
value of 'Form2'. Change the Caption text by simply typing
some new text (like MyForm). When you press ENTER the
Caption of the form will change to MyForm.

Use the Object Inspector to change any of the Properties for
the form or a component. For example, the screen position of
a form can be specified by editing the Left and Top property
values.

Adding some Programming Code
The Code Editor window is used to enter your programming code. For example, instead of
using the Object Inspector to change the Caption of a form, you could add some
programming code to change the caption.

To add programming code that changes the Caption of the form when the program runs, do
the following. First, double-click the mouse on Form2 to display the Code Editor window that
contains the programming code for the form. Note: You can also double-click the OnCreate
Event for Form2 in the Object Inspector.

The form has a collection of events such as a mouse click, key press, or component
activation for which you can specify some additional behavior. In this example, the Event is
called OnCreate. This event occurs when the form is created (when the program runs).

Add the code on line 8. The code will be executed when the program runs and the form is
first created. The code changes the form caption to display 'Hello Friend!' plus the date and
time.

11

Running a Program
To see the results of your programming, compile and run the program (which is comprised of
all the files in the project). To run the program click the green Run button on the toolbar, or
choose Run (from the Run menu), or press the F9 key on the keyboard. The ESPL compiler
will build the project and run the program (application). If the compiler ever detects an error in
the programming code it will display an Error window. In the case of an error, you would click
OK and the Code Editor would place the cursor on the line of code containing the error.

If the program compiles with no errors, then the program will run and you will see a blank form
on the screen. Every time you run this program the form caption will display Hello Friend!
along with the date and time that the program was run.

There is not much you can do with the form window in this simple example. You can move it,
resize it, or click the X button to close it.

Saving the project
After you have started a new programming project, you will want to save the project to the
hard disk. This will allow you to reopen and run the programming code later (after shutting
down and rerunning the Ensign program). Periodically save your project, even during
development, so that you always have a backup copy.
To save a project and all of its associated files select File | Save All from the menu, or click
the Save All button on the toolbar. By default, ESPL projects are saved to the
\Ensign10\ESPL folder. We suggest that you create a new folder (inside the ESPL folder) for
each separate project. This will help you to stay organized and avoid mixing files from
different projects. When you save a project for the first time you will be asked to name and
save each of the Unit files, and also to name and save the Project file (this should be the
name of your program). For example,

save Unit2 as Unit2.psc (the form will autosave as Unit2.sfm)
save Unit1 as Main.psc
save Project1 as Hello.dpr

Note: In the Code Editor window, the Unit1 tab will be changed to Main.

12

Adding more Features
Lets build on the previous example and add some components to the form. First, click on the
form and then move the mouse to the Tool palette and select the 'Standard' group. We will
add three standard Windows components and write some example code to see how the
components work together.

Add these three components:

• TLabel : use this component when you want to add some text to a form that the user
can't edit.

• TEdit : standard Windows edit control. Edit controls are used to retrieve text that users
type.

• TButton : use this component to put a standard push button on a form.

For example, select the TLabel entry in the Tool pallette, then click the mouse on the form. A
label should appear on the form. Next, select the TEdit tool, then click on the form again.
Then, select the TButton tool, then click on the form. If necessary, you can drag the
components around on the form to locate them as shown below.

Changing Component Properties
After you place components on a form, you can set their properties with the Object Inspector.
The properties are different for each type of component, some properties apply to most
components. Altering a component property, changes the way a component behaves and
appears in an application.

All the components have a property called Name. The Name property specifies the name of
the component as referenced in the programming code. When you first place a component on
a form, ESPL will provide a default name for the component, such as Label1, Edit1, Button1.
A good programmer will usually change the names to be more descriptive and meaningful.
For example, a form might have 3 buttons. Instead of using the default names of Button1,

13

Button2, and Button3, you might change the names to be btnStart, btnPause, and btnExit
(assuming that these were actions that the buttons would perform). Give the components a
meaningful name before writing further code that refers to them. This is done by changing the
value of the Name property in the Object Inspector.

To change a component property you must first activate the component. When you click on a
component (to activate it) small square handles appear at each corner and in the middle of
each side. Another way to select a component is to click its name in the drop down list that
appears at the top of the Object Inspector. The list shows all the components on the active
form along with their type and name.

When a component is selected, its properties (and events) are displayed in the Object
Inspector. To change the component property click on a property name in the Object
Inspector; then either type a new value or select from the drop-down list.

For example, change the Caption property for Button1 (I'll refer to components by their
names) to 'Hello...' (of course without the single quotation marks)

Components have different kinds of properties; some can store a Boolean value (True or
False), like Enabled. To change a Boolean property double click the property value to toggle
between the states. Some properties can hold a number (ie. Width or Left), a string (ie.
Caption or Text) or even a set of "simple valued" properties. When a property has an
associated editor, to set complex values, an ellipsis button appears near the property name.
For example if you click the ellipsis of the Font property a Font property dialog box will
appear.

Now, change the Caption (the static text the label displays on the form) of Label1 to 'Your
name please:'. Change the Text property (text displayed in the edit box - this text will be
changeable at run time) of Edit1 to your name.

14

Writing Code - Events and Event Handlers
To really enable components to do something meaningful you have to write some action-
specific code for each component you want to react on user input. Remember: components
are building block of any ESPL form, the code behind each component ensures a component
will react on an action.

Each component, beside its properties, has a set of events. Windows as event-led
environment requires the programmer to decide how a program will (if it will) react on user
actions. You need to understand that Windows is a message-based operating system.
System messages are handled by a message handler that translates the message to ESPL
event handlers. For instance, when a user clicks a button on a form, Windows sends a
message to the application and the application reacts to this new event. If the OnClick event
for a button is specified it gets executed.

The code to respond to events is contained in event procedures (event handlers). All
components have a set of events that they can react on. For example, all clickable
components have an OnClick event that gets fired if a user clicks a component with a mouse.
All such components have an event for getting and loosing the focus, too. However if you do
not specify the code for OnEnter and OnExit (OnEnter - got focus; OnExit - lost focus) the
event will be ignored by your application.

To see a list of events a component can react on, select a
component and in the Object Inspector activate the Events tab. To
really create an event handling procedure, decide on what event
you want your component to react, and double click the event
name.

For example, select the Button1 component, and double click the OnClick event name. ESPL
will bring the Code Editor to the top of the screen and the skeleton code for the OnClick event
will be created.

Note: For the moment there is no need to understand what all the words in the above code
stand for. Just follow along, we'll explain all that later.

15

As you will understand more clearly through this course, a procedure must have a unique
name within the form. The above procedure, ESPL component event-driven procedure, is
named for you. The name consists of: the name of the component name "Button1", and the
event name "Click". For any component there is a set of events that you could create event
handlers for. Just creating an event handler does not guarantee your application will do
something on the event - you must write some event handling code in the body of the
procedure.

We'll now write some code for the OnClick event handler of Button1. Alter the above
procedure body to:

Code completion
When you reach to the second line and write "Edit1."
wait a little. ESPL will display a list box with all the
properties of the edit box you can pick. In general, it
lists valid elements that you can select from and add
to your code.

Now, hit F9 to compile and run your project. When the program starts, click the Button1
('Hello...'). A message box will pop up saying 'Hello your name, Ensign welcomes you!'.
Change the text in the Edit box and hit the Button again...

16

What follows is a simple explanation of the code that runs this application. Let's see.

• The first line under the begin keyword, s := 'Hello ' + Edit1.Text + ' Ensign welcomes
you!'; sets a value for the variable s. This assignment involves reading a value of the
Text property for the Edit component. The Text property of an Edit component holds
the text string that is displayed in the edit box. That text is of the TCaption type,
actually the string type.

• The last statement, before the end keyword, ShowMessage(s);, is the one that calls
the message dialog and sends it the value of variable s - this results in a pop up box
your see above.

That's it. Again, not too smart, not too hard but serves the purpose. By now you should know
how to place components on a form, set their properties and even do a small ESPL
application.

Here are some exercises for you:

1. Play with the Color property of the Form object
2. Use the Font property Editor to alter the font of the TLabel component
3. Find out about the PasswordChar property of the TEdit component to create a simple

password dialog form
4. Try adding code for the OnCreate event of a form to make a form appear centered on

a screen. Also, become familiar with the Position property of the TForm object.

Debugging scripts
Use the IDE to run and debug scripts. The main features of the debugger are:

• Breakpoints
• Watches
• Step over/Trace into
• Run to cursor/Run until return
• Pause/Reset

The image shows the options under the menu item "Run". The
shortcuts keys or the menu/toolbar buttons can be used to
perform running/debugging actions, like run, pause, step over,
trace into, etc.. You can also toggle a breakpoint on/off by
clicking on the left gutter in the code editor. A watch can be
added to inspect variable values.

17

ESPL Programming

Variable Types
Program statements and functions often require parameters. The parameter values can be
Variables, Colors, or Predefined ESPL Constant values depending on the statement.

Integer A signed 32-bit integer in the range of -2147483648 to 2147483647,
used for loops and counters.

Real A double precision floating point variable, used for holding market Price
values and decimal values.

Boolean A boolean variable can have the values of either 0 (False) or 1 (True),
used for True or False tests.

String A dynamically allocated string up to two gigabytes in length, used for
holding Text or Ascii characters.

Currency Used for currency values. Will not have rounding problems.

Variant A powerful variable type that can hold any value of any type.

TDateTime Used for Date and Time functions.

TStringList Used to access properties and methods of String Lists.

TArray Used to access properties and methods of Arrays.

TFont Used to access Font properties.

TForm Used to access Form properties and methods.

THandle Used to access the Handle of objects.

TScreen Used to access Screen properties and methods.

18

Colors
Colors are represented by numeric values. ESPL has defined the following color Constants
which can be used any place that a color is required as a parameter. Color constants always
start with the letters ' cl '. The colors listed in the 2nd column below will match the color theme
on your computer. Include Graphics in the uses clause of the unit. Example:

uses Graphics;
begin
 SetPen(clWhite, 1, eDot);
end;

19

Constants
Several ESPL commands use predefined ESPL Constants as parameters. The Constants
represent numeric values. Using Contant names is easier than programming with numbers.
A few examples are shown below. By design, the Constant names start with a lower case 'e'.

eClear eDate eTime eHigh eLast
eLow eArrow eSymbol eRSI eSto
eNet eVolume eDot eOpen eAve

Example: writeln(GetVariable(eSymbol));

There are many ESPL constants. They are documented with their specific ESPL commands.

Playback
ESPL programs can be tested with a live simulated data source during or after market hours.
For example, if the markets are closed and your charts are not moving, and your ESPL
program requires real-time chart data to trigger an event or a signal, then use the Playback
feature Selecting Set-Up | Playback from the menu. Start a Playback session and do your
testing and development using the playback feed.

Program Structure
The structure of an ESPL program is made of two major blocks, 1) Procedure and Function
declarations, and 2) Main block of programming code. Both are optional, but at least one
should be present in the program. There is no need for the main block to be inside begin..end.
It could be a single statement. Statements should be terminated with the ‘ ; ‘ character.
Begin..end blocks are allowed to group statements.

Example 1
procedure DoSomething;
begin
 CallSomethingElse;
end;

begin
 DoSomething;
end;

Example 3
function MyFunction;
begin
 result:='Sell the Market';
end;

Example 2
begin
 CallSomething;
end;

Example 4
CallSomething;

20

Variable, Function, and Procedure Names
Variable names, Function names, and Procedure names should begin with a character (a..z
or A..Z), or ' _ ' , and can be followed by alphanumeric characters or the ' _ ' character.
They cannot contain any other characters or spaces.

Valid Names

VarName2
_MyProcedureName
MYFUNCTION99B3
_____MYname___

Invalid Names

2Var
My Name
Var-Name
This,is,not,valid

Assign Statements
Assign statements are accomplished by using :=

MyInteger := 2; {Assigns 2 to MyInteger}
MyString := 'Buy ' + '500 shares.'; {Assigns text to MyString}

Strings
Strings (a sequence of characters) are declared using a single quote ' character. Double
quotes " are not used. You can also use #nn to declare a character inside a string. There is
no need to use the ' + ' operator to add a character to a string.

StringA := 'This is some text';
StringB := 'This text is ' + 'concatenated';
StringC := 'A string ending with CR and LF characters'#13#10;
StringD := 'Some text with ' #40#41 ' characters in the middle';

Comments
Comments can be used anywhere in an ESPL program. You can use // characters,
or (* *) blocks, or { } blocks. Using // characters will finish at the end of line.

writeln('Hello World'); // This is a line ending comment

//This is a comment before ShowMessage
ShowMessage('SELL now');

(* This is another comment *)
ShowMessage('Your trade has been filled');

{ This is another valid comment } ShowMessage('BUY the Market');

21

Variables
There is no need to declare variable types in an ESPL program. Variables are implicitly
declared. However, you can optionally declare variables and their variable type using the var
statement. When var is absent the variable is auto-defined upon first detection in the script.
The following three examples all work fine.

Example 1
procedure MyMessage;
begin
 S:='Place Order Now'; ShowMessage(S);
end;

Example 2
var A;
begin A:=0; A:=A+1; end;

Example 3
var S: string;
begin S:='Price Target has been Reached!'; ShowMessage(S); end;

Variables have an unknown initialize value. Therefore, assign a value of zero to a variable
named Sum before using it in a FOR loop like this:

Sum := 0;
for I := 1 to 10 do Sum := Sum + I;

Indexes
Strings, arrays and array properties can be indexed using "[" and "]" characters. For example,
if Str is a string variable, then the expression Str[3] will return the third character in the
string denoted by Str, and Str[N + 1] would return the character immediately after the one
indexed by N.

MyChar := MyStr[2];
MyStr[1] := 'A';
MyArray[1,2] := 1530;
Lines.Strings[2] := 'Some text';

Arrays
ESPL supports array constructors and variant arrays. To construct an array, use "[" and "]"
characters. You can construct a multi-index array by nesting array constructors. You can then
access the arrays using indexes. If the array is a multi-index array, separate the indexes
using the "," character. If a variable is a variant array, ESPL will automatically support
indexing with that variable. A variable is a variant array if it was assigned using an array
constructor. Arrays in ESPL are all 0-base indexed.

22

NewArray := [2,4,6,8];
Num := NewArray[1]; {Num receives "4"}
MultiArray:=[['green','red','blue'],['apple','orange','lemon']];
Str := MultiArray[0,2]; {Str receives 'blue'}
MultiArray[1,1] := 'new orange';

Case statements
The Case statement provides a readable alternative to complex nested if conditionals. If the
selectorExpression matches one of the caseList items, then the respective statement (or
block of statements) is executed. The selectorExpression is any expression of any type.
Each value represented by a caseList item must be unique.

Statements can be a semicolon delimited sequence of statements. A Case statement can
have an optional final else clause. If none of the caseList items have the same value as the
selectorExpression then the statements in the else clause (if there is one) are executed.

SYNTAX:
case selectorExpression of
 caseList1: statement1;
 caseList2: statement2;
 …
 caseListn: statementn;
else
 elsestatements;
end;

Example:
case MyValue of
 1,2,3,4,5: Caption := 'Low';
 6,7,8,9: Caption := 'High';
 else Caption := 'Out of range';
end;

Function and Procedure declaration
Procedures and Functions, referred to collectively as routines, are self-contained statement
blocks that can be called from different locations in a program. A function is a routine that
returns a value when it executes. A procedure is a routine that does not return a value.
Function calls, because they return a value, can be used as expressions in assignments and
operations: Example: N := MyFunction(X);

Declaration of functions and procedures are similar to Delphi, with the difference that you
don't specify variable types. To return function values, use a result variable. Parameters by
reference can also be used.

23

procedure UpcaseMessage(Msg);
begin
 ShowMessage(Uppercase(Msg));
end;

function TodayAsString;
begin
 Result := DateToStr(Date);
end;

function Max(A,B);
begin
 if A>B then Result := A else Result := B;
end;

procedure SwapValues(var A, B); Var Temp;
begin
 Temp := A; A := B; B := Temp;
end;

Calling a subroutine
If the script has one or more functions or procedures declared, they can be called by their
name.

procedure DisplayHelloWorld;
begin
 ShowMessage('Hello world!');
end;

procedure DisplayByeWorld;
begin
 ShowMessage('Bye world!');
end;

begin
 DisplayHelloWorld;
 DisplayByWorld;
end;

Passing parameters
Values of variables can be used in functions and procedures by passing them as parameters.
The parameters are Variant types. ESPL doesn't need parameter types.

function Double(Num);
begin

24

 Result := Num*2;
end;

Accessing objects
One powerful feature of ESPL is access to registered objects such as buttons and menus.
You can make reference to objects in script, change its properties, call its methods, and so
on.

btnQuote.Caption := 'New caption';
btnQuote.Click;

Component objects can be placed on forms at design time. They can also be created
programmatically at run time. Example:

uses
 Classes, Graphics, Controls, Forms, Dialogs, Unit2;

var
 MainForm: TForm2;
 btn: TButton;
begin
 MainForm := TForm2.Create(Application);
 MainForm.Show;

 btn := TButton.Create(Application);
 btn.parent := MainForm;
 btn.top := 10;
 btn.width := 100;
 btn.Caption := 'Help';
end;

25

The next example will create a check box on the main ribbon, and assign its OnClick event.
Changing the check box state will hide or show draw tools on all charts.

uses
 Classes, Graphics, Controls;
var
 chkDraw: TCheckBox;

procedure MyClick; //click will hide/show draw lines on all charts
var I: integer;
begin
 for I := MyChild.Count downto 1 do begin //MyChild has all forms
 Window := I; //Window is global variable to point to a form
 ShowItem(eDrawTool, chkDraw.checked); //set draw flag on charts
 end;
end;

begin
 if ESPL = 1 then begin //execute via the 1 button on the ESPL form
 chkDraw := TCheckBox.Create(nil);
 chkDraw.parent := pagMain; //the Main ribbon will own the box
 chkDraw.caption := 'Draw Tools';
 chkDraw.left := 840; //widen Main ribbon to see the check box
 chkDraw.top := 11;
 chkDraw.OnClick := 'MyClick'; //name of procedure to handle click
 end;

 if ESPL = 2 then begin
 chkDraw.visible := false;
 chkDraw.free; //remove the object
 end;
end;

The other available ribbon panels are named pagSetup, pagWindow, and pagHelp.

26

Calling DLL functions
ESPL allows importing and calling of external DLL functions, by inserting special directives on
declaration of script routines, indicating library name and, optionally, the calling convention,
beyond the function signature. External libraries are loaded on demand, before function
calls, if not loaded yet. See Creating ESPL DLLs example.

SYNTAX:
Function functionName(arguments): resultType; [callingConvention];
external 'libName.dll' [name ExternalFunctionName];

EXAMPLE:
function MyFunction(arg: integer): integer; external 'CustomLib.dll';

The example above imports a function called MyFunction from CustomLib.dll. Default calling
convention, if not specified, is register. ESPL also allows you to declare a different calling
convention (stdcall, register, pascal, cdecl or safecall) and to use a different name for DLL
function, like the following declaration:

function MessageBox(hwnd: pointer; text, caption: ansistring;
msgtype: integer): integer; stdcall; external 'User32.dll' name
'MessageBoxA';

that imports the 'MessageBoxA' function from User32.dll (Windows API library), named
'MessageBox' to be used in script. The Declaration above can be used with functions and
procedures (routines without a result value).

msgtype integer

MB_OK 0

MB_OKCANCEL 1

MB_ABORTRETRYIGNORE 2

MB_YESNOCANCEL 3

MB_YESNO 4

MB_RETRYCANCEL 5

MB_ICONHAND 16

MB_ICONQUESTION 32

MB_ICONEXCLAMATION 48

MB_ICONASTERISK 64

MB_ICONWARNING 48

MB_ICONERROR 16

MB_ICONINFORMATION 64

27

https://www.ensignsupport.org/bb/pdfs/ESPL-CreatingESPLDLLs.pdf

Supported Types
ESPL supports following data Types on arguments and result of external functions:

Integer
Boolean
Char
Extended
String
Pointer
PChar
Object
Class
WideChar

PWideChar
AnsiString
Currency
Variant
Interface
WideString
Int64
Longint
Cardinal
Longword

Single
Byte
Shortint
Word
Smallint
Double
Real
DateTime
Comp

Others types (records, arrays, etc.) are not supported. Arguments of the above types can be
passed by reference, by adding var in the param declaration of the function.

Include Libraries
ESPL allows you to include multiple files (or libraries of code). Use the uses statement to
specify the files to include in the current program file. For example,

{This is the first program file named Script1}
uses Script2;
begin
 Script2GlobalVar := 'Hello world!';
 ShowScript2Var;
end;

{This is the second program file named Script2}
var Script2GlobalVar: string;
procedure ShowScript2Var;
begin
 ShowMessage(Script2GlobalVar);
end;

When you execute the first script, it "uses" Script2, and is able to read and write global
variables and call procedures from Script2. Script1 must know where to find Script2 via its
identifier in the uses clause, for example:

uses Classes, Forms, Script2;

Commonly used libraries: Buttons, Classes, ComCtrls, Controls, Dialogs, ExtCtrls, Forms,
Graphics, ImgList, IniFiles, Menus, StdCtrls.

28

Libraries are typically added automatically to a unit's uses statement as components are
added to forms. For example, adding a TButton object to a form will automatically add
Buttons to the uses statement.

Secure Library Files

When units are saved, two files are written. The files with the .psc are the ASCII source files
for the script that is displayed in the editor. A non ASCII library file with a .lib extension is also
saved. It is sufficient to distribute the .lib library file instead of the .psc source file to other
users. Follow this process for distributing library files for security and secrecy when you do
not want the source code to be displayed or changed.

1. Click the Save All button on the editor form. The library files are created.
2. Use menu File | Remove from Project to remove the 2nd, 3rd, or other units. Keep the

main unit as that unit needs to remain. In the previous example, the Script2 unit could
be removed from the project, but kept in the uses statement.

3. The main unit has a uses statement with references to the units removed from the
project. In the previous example, the Script2.lib file would be distributed.

4. Distribute in a package the project file with its .ssproj extension. Distribute the .lib file
for each unit removed from the project. Distribute any .sfm form files.

Declaring Forms in ESPL
A powerful feature in ESPL is the ability to declare forms and use .sfm files to load form
resources. With this feature you can declare a form to use it in a similar way as Delphi. For
example,

//Main script
uses
 Classes, Forms, MyFormUnit;
var
 MyForm: TMyForm;
begin
 {Create instances of the forms}
 MyForm := TMyForm.Create(Application);
 {Initialize all forms calling its Init method}
 MyForm.Init;
 {Set a form variable. Each instance has its own variables}
 MyForm.MyFormGlobalVar := 'my instance';
 {Call a form "method". You declare the methods}
 MyForm.ChangeButtonCaption('Another click');
 {Accessing form properties and components}
 MyForm.Edit1.Text := 'Default text';
 MyForm.Show;
end;

29

//My form script
{$FORM TMyForm, myform.dfm}
var MyFormGlobalVar: string;
procedure Button1Click(Sender: TObject);
begin
 ShowMessage('The text typed in Edit1 is ' + Edit1.Text + #13#10 +
'And the value of global var is ' + MyFormGlobalVar);
end;

procedure Init;
begin
 MyFormGlobalVar := 'null';
 Button1.OnClick := 'Button1Click';
end;

procedure ChangeButtonCaption(ANewCaption: string);
begin
 Button1.Caption := ANewCaption;
end;

The sample scripts above show how to declare forms, create instances, and use their
"methods" and variables. The second script is treated as a regular Library, so it follows the
same concept of registering and using. The $FORM directive is the main piece of code in the
form script. This directive tells the compiler that the current script should be treated as a form
class that can be instantiated, and all its variables and procedures should be treated as form
methods and properties. The directive should be in the format {$FORM FormClass,
FormFileName}, where FormClass is the name of the form class (used to create instances,
take the main script example above) and FormFileName is the name of a .sfm form which
should be loaded when the form is instantiated.

The .sfm file is a regular Delphi file format, in text format. You cannot have event handlers
defines in the sfm file, otherwise an error will raise when loading the sfm.

30

Event Redirection
This example shows how ESPL can be notified when the Ensign program is closing so that
information can be saved before the program closes.

Redirect the OnCloseQuery event for the main Ensign form to an ESPL procedure which
performs the clean-up tasks such as saving information. The main Ensign form is referenced
with the component named frmMain. This example will print a message in the Output
window when Ensign closes.

uses
 Forms;

procedure ShutDown;
begin
 writeln('Exiting');
end;

begin
 if ESPL = 3 then
 frmMain.OnCloseQuery := 'ShutDown';
end;

Cick ESPL button 3 to establish the redirection of the OnCloseQuery event. Then
when Ensign exits, the OnCloseQuery event fires and executes the ESPL ShutDown
procedure which displays ‘Exiting’ in the Output window. Ensign continues its exiting
processes and closes down.

The following Forms events can be redirected: (requires Forms in the Uses clause)

• OnClose
• OnCloseQuery
• OnHelp
• OnException
• OnGetHandle
• OnIdle
• OnSettingChange

The following Classes events can be redirected: (requires Classes in the Uses clause)

• OnNotify All events in any object that are of TNotifyEvent type are supported.
(Button: OnClick, OnMouseEnter, OnMouseDown,
Combo: OnChange, OnEnter, OnExit, etc.)

31

	Introduction
	ESPL Language Features
	Documentation Format

	ESPL Programming Window
	Projects
	Suggestions for Designing an ESPL Program
	Creating a new Project
	Opening an Existing Project

	Editing your ESPL Program
	Designing Forms
	Tool Palette and Components
	Object Inspector
	Adding some Programming Code
	Running a Program
	Saving the project
	Adding more Features
	Changing Component Properties
	Writing Code - Events and Event Handlers
	Code completion

	Debugging scripts

	ESPL Programming
	Variable Types
	Colors
	Constants
	Playback

	Program Structure
	Variable, Function, and Procedure Names
	Assign Statements
	Strings
	Comments
	Variables
	Indexes
	Arrays
	Case statements
	Function and Procedure declaration
	Calling a subroutine
	Passing parameters

	Accessing objects
	Calling DLL functions
	Supported Types

	Include Libraries
	Secure Library Files

	Declaring Forms in ESPL
	Event Redirection

